Loss of CFTR activity is the underlying cause of cystic fibrosis (CF)\(^1\)

• People with 2 CFTR mutations resulting in loss of CFTR activity generally have a CF phenotype, which may include\(^1-3,6\)
 – Elevated sweat chloride (>60 mmol/L)
 – Pancreatic insufficiency
 – CBAVD\(^a\)
 – Lung function decline over time
 – *Pseudomonas aeruginosa* colonization

\(\text{Spectrum of Phenotypes Associated With Total CFTR Activity}^{1,2}\)

<table>
<thead>
<tr>
<th>Total CFTR Activity % of Normal</th>
<th>No CF Disease</th>
<th>CFTR-related Disorders</th>
<th>Cystic Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)CBAVD, congenital bilateral absence of the vas deferens.

Levels of CFTR activity affect survival in CF

Life expectancy in Western countries (general population born in 2000) is ~79 years.

Between 1993 and 2002, median survival for US patients with genotypes associated with little to no CFTR activity was 36.3 years (95% CI, 35.5 to 37.6 years), while median survival for those having genotypes associated with residual CFTR activity was 50 years (95% CI, 47.1 to 55.9 years).

No patients with the CFTRdele2,3 mutation were included in this US registry study. CFTRdele2,3 is a Class I mutation, resulting in severely reduced CFTR activity.

More recent US data (2000-2010) suggest median survival across genotypes continues to improve.

Survival Curves by CFTR Activity During a 10-Year Follow-Up (1993-2002) of Patients From the US CFF Registry

- Life expectancy in Western countries (general population born in 2000) is ~79 years.
- Between 1993 and 2002, median survival for US patients with genotypes associated with little to no CFTR activity was 36.3 years (95% CI, 35.5 to 37.6 years), while median survival for those having genotypes associated with residual CFTR activity was 50 years (95% CI, 47.1 to 55.9 years).
- No patients with the CFTRdele2,3 mutation were included in this US registry study. CFTRdele2,3 is a Class I mutation, resulting in severely reduced CFTR activity.
- More recent US data (2000-2010) suggest median survival across genotypes continues to improve.
Only the Belgian country registry reports any prevalence of the \textit{CFTRdele2,3} mutation among patients with CF1

Prevalence of the \textit{CFTRdele2,3} Mutation in Patients With Cystic Fibrosis (% of Patients With at Least 1 Allele)

- In the CFTR2 global database, \textasciitilde0.5\% of patients with CF have at least 1 copy of the \textit{CFTRdele2,3} mutation2

- \textit{CFTRdele2,3} is prevalent among patients with CF of Slavic descent3,4

<table>
<thead>
<tr>
<th>Country</th>
<th>% of Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic5</td>
<td>6%</td>
</tr>
<tr>
<td>Russia5</td>
<td>5%</td>
</tr>
<tr>
<td>Belarus5</td>
<td>3%</td>
</tr>
<tr>
<td>Lithuania5</td>
<td>2%</td>
</tr>
<tr>
<td>Poland5</td>
<td>2%</td>
</tr>
<tr>
<td>Canada6</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

The CFTRdele2,3 mutation results in defective biosynthesis of the CFTR protein$^{1-4}$

- CFTRdele2,3 is a frameshift mutation, which produces a premature stop codon$^{1-3}$
- The cell cannot synthesize a full-length CFTR protein, a Class I mutation2,3
- As a result, few to no CFTR proteins are present at the apical cell surface$^{2-4}$

The CFTRdele2,3 allele results in little to no total CFTR activity1-5

Total CFTR activity can be defined as total ion transport mediated by CFTR protein channels at the cell surface, depending on CFTR protein quantity and function5.

1. Defective Synthesis (Class I)

2. A virtual absence of CFTRdele2,3-CFTR protein quantity...

3. ...regardless of function since few to no CFTR proteins reach the surface...

4. ...results in little to no total CFTR activity

Both *CFTR* alleles play a role in determining phenotype or disease severity\(^1\text{-}^7\)

- A *CFTR*\(_{dele2,3}\) allele results in little to no CFTR activity. The phenotype of a particular patient is also influenced by the mutation on the other allele\(^1,^2,^4\text{-}^7\).

- *CFTR*\(_{dele2,3}\) typically results in the indicated phenotypes

\[\begin{array}{c|c|c|c}
\text{Total CFTR Activity} & \text{Allele 1} & \text{Allele 2} \\
\hline
\text{Normal} & \text{Normal} & \text{Normal} \\
\text{Residual} & \text{Residual} & \text{Residual} \\
\text{Little to None} & \text{Little to None} & \text{Little to None} \\
\end{array}\]

CFTRdele2,3 in combination with another allele that produces little to no CFTR activity usually results in a CF phenotype\(^1-4\)

CF Phenotype

In patients registered in the CFTR2 database with a **CFTRdele2,3** mutation on 1 allele and a pancreatic insufficient mutation on the second allele\(^1\)

- Elevated sweat chloride (average): 99 mmol/L
- Lung function decline over time
- Pseudomonas colonization: 43% of patients
- Pancreatic insufficiency: 99% of patients

References

Summary

- Loss of CFTR activity is the underlying cause of CF
- Levels of CFTR activity affect survival in CF
- Only the Belgian country registry reports any prevalence of the \(CFTR^{dele2,3} \) mutation among patients with CF
- The \(CFTR^{dele2,3} \) mutation results in defective biosynthesis of the CFTR protein
- The \(CFTR^{dele2,3} \) allele results in little to no total CFTR activity
- Both \(CFTR \) alleles play a role in determining phenotype or disease severity
- \(CFTR^{dele2,3} \) in combination with another allele that produces little to no CFTR activity usually results in a CF phenotype